

Accelerating insights from 4D seismic data with new multidimensional data structures

Jorg Herwanger, Andy Bottrill Cerys Biancardi Scenario modelling exercises

Scenario modeler introduction

The new scenario modelling tool was designed to allow the rapid creation of seismic synthetics. This can be used for several workflows such as modelling production scenarios, comparing wavelets Three methods for creation of scenarios are supported:

• Simple user defined layered models

- Blocky log based models
- Full well log based synthetics

5

Layers

Scenario modelling This tutorial uses the project **4D_Tutorial_Leiden**

- Using log sets to create and compare well log synthetics
- <u>Comparing production scenarios using blocky</u> <u>models</u>
- Making Rock Physics changes to blocks
- <u>Creating Blocky models</u>

Scenario modeler

This tutorial uses the **4D_Tutorial_Leiden** project. This can be opened from Project -> Open Project and then browsing to the project folder and double clicking the config_PreStackPro.xml

This exercise predominantly uses the new scenario modelling tool which is found under Interpretation-Processing -> Synthetic Scenario Modelling

Well log synthetics

Well log synthetics – in situ Oil

With the **4D_Tutorial_Leiden** project open

We are going to create a full well log synthetic for the in situ oil filled case at the exploration well

- Open Synthetic Scenario Modelling from Interpretation-Processing
- 2. Click the well synthetic icon
- Select the Exploration_1 well
- 4. Select the Insitue_Oil_initP logset

Well log synthetics – in situ Oil

- You should now have a first scenario which has inherited the logset name
- 2. Drag and drop this into the base panel
- 3. The logs and synthetic should display in the tracks to the right

Well log synthetics – Brine sub log set

Well log synthetics – Brine sub log set

- 1. You should now have a second scenario for a brine filled reservoir
- 2. Drag and drop this into the monitor panel
- 3. The logs and synthetic should display in the tracks to the right
- 4. As you now have base and monitor you should get a difference track displayed as well

Time-lapse differences

- 1. Zoom in on the region of the time shifts by hovering over the track scale and scrolling on the mouse
- 2. You may also have to zoom the horizontal scale on the log track to see where they differ in Vp and Rho

Note how the change from oil to brine in the upper reservoir layer cause a hardening response

Other full well synthetics – Optional extension

	1D model Rock Physical Change + Synth	Monitor		> < VS >	< Rh > < Al	> <vp <="" th=""><th><pre>><base syntl=""/><monitor sy<br="">s E Synthetic() : Synthetic() : Volume Calcu Synthetic() : Synthetic() : Volume Calcu Synthetic() : Synthetic() : Synthetic()</monitor></pre></th><th></th></vp>	<pre>><base syntl=""/><monitor sy<br="">s E Synthetic() : Synthetic() : Volume Calcu Synthetic() : Synthetic() : Volume Calcu Synthetic() : Synthetic() : Synthetic()</monitor></pre>	
icenarios Well Full log Insitu ol I Full log brine initP Full log brine highP Full log gas_initP Full log gas_initP Full log gas_initP	Base Full log Insitu_oil_initP Logs Well File ID: 552 Name: Exploration_1 Well File D: 552 Name: X1_TIME-Checkshot VP Log File ID: 595 Name: X1_VP_oil_UR VS Log File ID: 604 Name: X1_VP_oil_RU Density Log File ID: 604 Name: X1_RHOB_oil_RU Info VellHead (Inline/Xline): [1230.71] Xelly Bushing elevation: 23 True depth (MD): 2800 Water depth: 382 TWT data: Calculated from checkshots TD conversion: 123 entries	Monitor Full log brine_highP Logs Well File ID: 543 Name: Exploration_1 Well To File ID: 552 Name: X1_TIME-Checkshot VP Log File ID: 598 Name: X1_VP_brine_highP_UR VS Log File ID: 607 Name: X1_VP_brine_highP_RU Density Log File ID: 603 Name: X1_RHOB_brine_highP_RU Info Type: WellHead (Inline/Xline): [1230.71] 2050.99] Kelly Bushing elevation: 23 True depth (MD): 2800 Water depth: 382 TWT data: Calculated from checkshots TD conversion: 123 entries	2 2 3 2 3 2 3 3 3 3 1	As Ve Base on Ve Base 193.1 193.1 193.1 1 1 1 1 1 1 1 1 1 1 1 1 1	AT B B AT B B AT B B AT B B AT B AT B A	Dec Vr/Vs 0.0 1/10 3 1 Vp/Vs 0.0 1/10 3 1 Vp/Vs 1 C V 2 C Vr/Vs 1 C V 2 C Vr/Vs 1 C V 2 C Vr/Vs 1 C V 2 C Vr/Vs 2 C Vr/	Synthetic() : Synthetic() : Volume Calc Angle: 0 X-Axis: Angle X-Axis: Angle 0 V-Axis: Angle 0	Layer

There are another 3 logsets in the project that represent the case of the upper reservoir with increased pressure, filled with both oil and brine as well as a gas filled case.

If you want, you can repeat the steps above to create scenarios for all the log sets. Alternatively, you can load the session "Full logs all logsets"

Other full well synthetics – Optional extension

Now you have 5 scenarios try comparing how the time lapse signal changes for the different production scenarios. Here are a few suggestion:

Base		Monitor
Oil initial Pres	\rightarrow	Oil high Pres
Oil initial Pres	\rightarrow	Brine high Pres
Oil initial Pres	\rightarrow	Brine initial Pres
Oil initial Pres	\rightarrow	Gas initial Pres

Note you can set a scenario as base or monitor by dragging and dropping or right clicking on it in the tree and using the set as bas/monitor option

Blocky synthetic scenarios

Equivalent Blocky models

Now open another scenario modeler window

- 1. Load session
- Select the session "Blocky all logsets"

This session has pre-made blocky equivalents for the full well log synthetic you created in your previous session

Equivalent Blocky models

			Scenario Modeller		_ _ X
Image: Construction Image: Construction Synthetics : Synthetis : Synthetis : Synthetics : Synthetics : Synthetics : Synthetics	🗾 🖸 🗹 🧪				
Note: Note: <th< th=""><th></th><th>1D model Rock Physical Change</th><th>nthetic setup</th><th>CVPSCVSSCR65CALSCV0SCR65CSV010CM00itor SVSCM00itor -</th><th>F</th></th<>		1D model Rock Physical Change	nthetic setup	CVPSCVSSCR65CALSCV0SCR65CSV010CM00itor SVSCM00itor -	F
All and pressure brief and pressure bri	F i 🔤 😫 🔍 🔮 😴	Base	Monitor	VP Base Vy S Base Rho Ba Al Base Vy/S E	al
Oli Int gressure Spioration 1 W- Cost int pressure Exploration 1 W- Cost int pressure Exploratin 1 W- Cost int prest int pressure Exploration 1 W- Cost int pres	Oil init pressure Exploration_1		Monitor	Angle: 0 Angle: 0 Angle: 0 Angle: 0	Layers
Bine high pressure Exploration 3 	Oil high pressure Exploration_1 Brine init pressure Exploration_1	e Oil init pressure	Brine init pressure	Image: Second	gl
Vois init pressure Explorition_1 Visual 2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brine high pressure Exploration_1	+ - / TOP LAYER	+ - TOP LAYER		
V9 2409.9 · mo V0 2402.3 · mv V0 2402.3 · mv More Win 22.26 · g/cm ⁻³ V1 V1 V2	Gas init pressure Exploration_1				TOP LAYE
Via 830.7 [m/n] Via 810.4 [m/n] No 810.4 [m/n] Block 2 Via 810.4 [m/n] No 810.4 [m/n] No 810.4 [m/n] Block 2 Block 3 Via 810.4 [m/n] No 2420 [m/n] Via 810.4 [m/n] Block 2 Block 3 Block 4 Block 5 Block 6 Block 5 Block 5 Block 5 Block 5 Block 6 Block 5 Block 6 Block 6 Block 7 Block 6 Block 7 Block 6		Vp 2488.9 🗘 m/s	Vp 2492.3 🗘 m/s		
Into 2.206 into into 2.206 into		Vs 830.7 C m/s	Vs 841.4 💭 m/s		
Phickness a3.50 : m Prickness Block 4 Block 5 Block 5 Block 6 Block 5 Block 6 Block 7 Block 7 </td <td></td> <td>Rho 2.296 2 g/cm^3</td> <td>Rho 2.296 🗘 g/cm^3</td> <td></td> <td>BIOCK 2</td>		Rho 2.296 2 g/cm^3	Rho 2.296 🗘 g/cm^3		BIOCK 2
Image:		Thickness 83.50 C m	Thickness 83.50 🗘 m		
Image: Section of the section of th		, more	, more		
Vp 30304.9 ms		+ - / Block 2	+ - / Block 2		
Vp 3058.6 n/x v/x 3064.9 ms NS 1358.6 n/x y/x 1394.2 ms					Block 3
Vs 1384.2 cm/s vs vs 1384.2 cm/s vs vs 1384.2 cm/s vs		Vp 3058.6 C m/s	Vp 3084.9 ‡ m/s		Block 4
Rho 2.421 g/g/m^3 Rho 2.421 g/g/m^3 Block 5 More Nore Nore Block 3 Inickness 144.88 mis Block 4 Block 5 Block 6 Vp 2409.0 mis Vs 702.6 n/s Nore Nore Nore Nore Nore Block 5 Block 6 Block 6 Block 7 Block 6 Block 7 Block 6 Block 6 Block 6 Block 7 Block 7 Block 6 Block 7 Block 6 Block 6 Block 7		Vs 1358.6 C m/s	Vs 1384.2 💭 m/s		
Thickness 144.89 mm Thickness 144.89 mm Thickness 144.89 mm Thickness		Rho 2.421 🗘 g/cm~3	Rho 2.421 🗘 g/cm^3		Block 5
Image: product of produc		Thickness 144.88 🖨 m	Thickness 144.88 🛊 m		Block 6
Image: Block 3 Image: Block 3 Image: Block 3 Image: Block 3 Vp 2404.9 m/s Vp 2409.0 m/s Vs 782.6 m/s Nore Vs 791.7 m/s Nore Nore Nore Nore Image: Block 4 Imag		> More	> More		DIOCKO
Vp 2404.9 \subset m/s Vp 2409.0 \subset m/s 03 utffitting 03 utffitting 05 intraß Vs 782.6 \subset m/s Vs 791.7 \subset m/s N/s 791.7 \subset m/s 04 \subset m/s 05 intraß Nore Nore Thickness 35.00 \subset m Nore 00 \subset m/s 04 \subset m/s 04 \subset m/s 04 \subset m/s 05 intraß Vp 2402.2 \subset m/s Nore Nore 00 \subset m/s 00 \subset m/s 00 \subset m/s 04 \subset m/s 05 intraß		+ - / Block 3	+ - / Block 3		
Vp 2404.9 ° m/s Vp 2409.0 ° m/s Vs 791.7 ° m/s No 2.277 ° g/cm^3 N/s Rho 2.277 ° g/cm^3 N/s More Nore Nore Nore Nore Nore Nore Vs 1251.6 ° m/s N/s 1251.6 ° m/s N/s 1281.3 ° m/s N/s 3356.1 lt23.4 ° 2.319 7785.1 lt840° Thickness 78.63 ° m Thickness 78.63 ° m N/s 1823.6 ° 1823.6 ° 2.319 7785.1 lt840°					03 1stRes
Vs 782.6 m/s Rho 2.277 g/cm^3 Thickness 35.00 m More More More Block 4 Vp 2820.2 m/s Vs 1251.6 m/s Vs 1251.6 m/s Rho 2.373 g/cm^3 Thickness 78.63 m		Vp 2404.9 C m/s	Vp 2409.0 🗘 m/s		05 IntraR
Rho 2.277 g/cm^3 Thickness 35.00 m More m More m More More Vp 2820.2 m/s Vs 1251.6 m/s Rho 2.373 g/cm^3 Rho 2.373 g/cm^3 Thickness 78.63 m		Vs 782.6 🖨 m/s	Vs 791.7 🛊 m/s		Block 11 BOTTOM
Thickness 35.00 tm Thickness 35.00 tm More More Block 4 Image: Constraint of the state of t		Rho 2.277 \$ g/cm^3	Rho 2.277 \$ g/cm^3		BOTTOM
More , More Block 4 - Block 4 - Vp 2820.2 m/s Vs 1251.6 m/s Vs 1251.6 m/s Rho 2.373 g/cm^3 Thickness 78.63 m		Thickness 35.00 🗘 m	Thickness 35.00 🗘 m		
W Block 4 V 2845.6 m/s Vp 2845.6 m/s Vs 1281.3 m/s Vs 1251.6 m/s Vs 1281.3 m/s Rho 2.373 g/cm^3 Rho 2.373 g/cm^3 Thickness 78.63 m Thickness 78.63 m		> More	More		
Vp 2820.2 m/s Vp 2845.6 m/s Vs 1251.6 m/s Vs 1281.3 m/s Rho 2.373 g/cm^3 Rho 2.373 g/cm^3 Thickness 78.63 m Thickness 78.63 m		Block 4	Block 4		
Vp 2820.2 m/s Vp 2845.6 m/s Vs 1251.6 m/s Vs 1281.3 m/s Rho 2.373 g/cm^3 g/cm^3 3356.c 1823.c 2.319 7785.1 1.8403 Thickness 78.63 m Thickness 78.63 m 3356.c 1823.c 2.319 7785.1 1.8403		DIOCK-T	DIOCKAT		
Vs 1251.6 m/s Vs 1281.3 m/s Rho 2.373 g/cm^3 Rho 2.373 g/cm^3 Thickness 78.63 m Thickness 78.63 m		Vp 2820.2 🗘 m/s	Vp 2845.6 2 m/s	T T T T T T T T T T T T T T T T T T T	
Rho 2.373 g/cm^3 Thickness 78.63 m		Vs 1251.6 🗘 m/s	Vs 1281.3 🗘 m/s		
Thickness 78.63 m 78.63 m 3356.4 1823.4 2.319 7785.1 1.8402		Rho 2.373 🗘 g/cm×3	Rho 2.373 🗘 g/cm*3	g - 3356.0 1823.0 2.3191 7785.1 1.8405	
		Thickness 78.63 🗘 m	Thickness 78.63 💭 m	3356.0 1823.0 2.3193 7785.1 1.8405	Þ

- 1. Drag the Oil initial pressure scenario int the base panel
- 2. Drag the Brine initial pressure scenario into the monitor panel

Compare the synthetics from for the full log scenarios you makes with the equivalent blocky scenarios. Also compare the 4D differences.

SHARP REFLECTIONS

Comparing Blocky and full log synthetics

Here we can see that both the blocky and full resolution logs are giving very similar 4D differences

This is a nice result as it show that we can successfully predict the 4D differences between production scenarios with relatively simple blocky models

Note: to get the two viewers on identical color scales you may have to capture the histogram from one to the other. This is accessed by right clicking one of the seismic track titles and then right clicking the color bar

Comparing Blocky production scenarios

Using our blocky models Try comparing the timelapse response for some different pairs of scenarios such as the pair show to the right of this slide, where we simulate oil being replaced by brine with a pressure increase. Here are some suggestions:

Base		Monitor
Oil initial Pres	\rightarrow	Oil high Pres
Oil initial Pres	\rightarrow	Brine high Pres
Oil initial Pres	\rightarrow	Brine initial Pres
Oil initial Pres	\rightarrow	Gas initial Pres

Do you think the changes in amplitude would allow us to differentiate between the different production scenarios? What attributes might be useful to help us?

SHARP REFLECTIONS

Aligned Blocky synthetics – Hot off the press

#			Scenario Modeller		
🗾 🖸 🖉 🧪					
년 🔄 🛐 🖸 🗑 🎸	1D model Rock Physical Chang	Synthetic setup		<pre></pre>	< Monitor - E
Scenarios Well	■ Base		Monitor	() (E) (C) Base Vs Base Rho Ba Al Base Vp/Vs E 2200.01 900.00 2.00(3.0 4000.01 1.10 3. Synthetic() : Synthetic() :	Volume Cal
Oil high Exploration_1	-0-			Angle: 0 Angle: 0 Angle: 0	Angle: 0 Layers
Oil init p Exploration 1	😇 Oil init pres	e 🖉	Brine init pressure	$F \ge 2200.01900.002.00(3.04000.0011.103.07)$ Axis: Angle X-Axis: Angle 0	X-Axis: Ang l 0
Gas init Exploration_1 Brine big Exploration_1	🔶 🗕 🖋 TOP LA	ER 🛛 🕈 🗕 🖊	TOP LAYER		Ľ
Brite fig Exploration_1				mai	
	Vp 2488.9	m/s Vp	2492.3 🗘 m/s		
	Vs 830.7	m/s Vs	841.4 🗘 m/s		TOP LAYE
	Rho 2.296 0	g/cm^3 Rho	2.296 C g/cm^3	 Approximate approximate appro	
	Thickness 83.50	m Thickness	83.50 C m		
	> More	> More			Block 2
	Block		Block 2		
PreStackPro			DIOGNE		
Color schema	Vp 3058.6	m/s Vp	3084.9 🗂 m/s		
Base	Vs 1358.6	m/s Vs	1384.2 🗘 m/s		Block 3
Masitas	Rho 2.421	g/cm ^{-^} -3 Rho	2.421 🗘 g/cm^3.		
Monitor	Thickness 144.88	m Thickness	144.88 🗘 m		Block 4
Previews	> More	> More			
Log tracks width 50.0	000 2				Block 5
Seismic tracks width 100.0	Block	+ - /	Block 3		Block 6
			2 4 9 2 9 1 1 1 1 1 1 1		
Aligh Synthetics	Vp 2404.9	m/s vp	2409.0 m/s		and the second se
Time Axis (586 sample	rs) 8h0 2277 *	d/cm^3 Rho	2 277 a n/cm^3		03 1stRev 00WC(1)
From Time 1.94	10 \$ s Thickness 35.00	m Thickness	35.00 C m		05 IntraR Custom b
Step 0.00	01 🗘 s More	> More			BOTTOM
To Time 2.52	25 ‡ s				
Consel	Block	+ - /	Block 4		
The second secon	4 OK				
	Vp 2820.2	m/s Vp	2845.6 C m/s		
	Vs 1251.6	m/s Vs	1281.3 🗘 m/s	2300	
	Rho 2:373	g/cm^3 Rho	2.373 ‡ g/cm^3	3208.5 1678.4 2.3761 7623.8 1.9116 3221.0 1679.6 2.3763 7654.4 1.9172	
	Thickness 78.63	m Thickness	78.63 💭 m		Þ

The other interesting thing to note is that if we zoom out to the whole model, we see small amplitude changes above and below the reservoir. This is due to the blocky models having their own Time-Depth relationship with a tie point (black bar). Therefore, here we are seeing the effects of a velocity change in the reservoir generating timeshifts in the synthetics between the 2 scenarios.

Aligned Blocky synthetics – Hot off the press

If you would prefer to see the model comparison without timeshifts:

- 1. Click on the spanner icon to open the settings dialog
- 2. Tick on the Align synthetics option

What this does is calculating both synthetics using the time depth relationship from the base. This is useful as allows you to directly compare the amplitude changes without the complication of timeshifts.

SHARP REFLECTIONS

Theory – Synthetics with time shifts

Vertical axis TWT: TD curve from Vp for each scenario

 \rightarrow Synthetics with timeshifts, showing "true" time-lapse signal, but spurious amplitude changes

Theory – Synthetics without time shifts

Vertical axis time: TD curve common for each scenario (e.g., from baseline or well) \rightarrow Synthetics without timeshifts, showing "true" amplitude changes

21 The GATHERing 2023, Leiden, The Netherlands 20 October 2023

Copy scenarios to the data pool

Let's now export our blocky scenarios to the data pool for analysis in other tools

- . Use the gear icon to open the copy to data dialog.
- 2. Select all the scenarios you want to export
- You can also check the copy elastics option as well as open in Volume and data comparator options

This will create a volume with the scenarios along the second gather (Vintage) axis

Note you can only copy scenarios with the same gather geometry to a single object

Viewing the synthetic output in other viewers

In the gather viewer that opened you can view all your scenario synthetic side by side.

Try also turning on some of the horizons to help you visualize where you would expect changes in the synthetic

To get the view of all scenarios side by side you need to select the "Display classification over Angle" option. If the viewer is launched from the tool it should already be in that view model.

Viewing the synthetic output in other viewers

- In the Data Comparator turn on the 03_1stResSand_2.2_Grid horizon to help you visualize where you would expect changes the synthetic seismic at top reservoir to be
- 2. Pin the crosshair by right clicking in one of the panels at this horizon.
- 3. Compare the AVO responses for different scenarios

Do you think there is enough of a difference in AVO response at top reservoir to separate them in intercept gradient space?

Rock Physics modifications

Additional exercise if time allows

Working with blocked scenarios

E	Scenario Mo	Modeller	_ 🗆 🗙
🗾 🖸 🗸			
Scenarios Blocked In situ Oil Exploration_1	1D model Rock Physical Change Synthetic setup Base Monitor More	$ \begin{array}{c} (\mathbf{y}) \\ (\mathbf$	ayers
		2.135 2.135 2.135 2.135 2.100 2.110 2.100 2.110 2.100 2.110 2.100 2.110 2.100 2.110	ock 2
	• • 05_IntraResShale(1) Vp 3148.6 ‡ m/s Vs 1763.3 ‡ m/s Rho 2.324 ‡ g/cm^3 Thickness 15.75 ‡ m		ock 3 (1 ock 4
	 Custom boundary 4 Vp Vs 1.7 ± m/s 1.768.2 ± m/s Rho 2.223 ± g/cm^3 Thickness 29.50 ± m 	BIG	ock 5 ock 6
4	Image: block 11 Vp 3362.4 ‡ m/s Vs 1836.7 ‡ m/s Rho 2.338 ‡ g/cm^3 Thickness 132.63 ‡ m	000 05 00 00 00 00 00 00 00 00 00 00 00	<u>DWC(1)</u> IntraR stom b ock 11

- Reopen a new scenario modelling window and load the session "Blocky Oil inSitu"
- We can rename some of the blocks to make their names more meaningful, using the pencil icon. For example, Block 3 can become the BCU and our custom boundary can be lower reservoir. To do this you might have to unlock the scenario using the padlock at the top of the scenario by its name

=

1

Working with blocked scenarios

- 1. Copy this base scenario using the copy icon
- 2. Rename this copy to Brine upper res by right clicking on it
- 3. Then drag and drop the copy into the monitor pane

Note here you could freehand change the elastic properties of any of the blocks and observer the effect. However for a more meaningful change we can set up a Rock Physics model that applies to a block

Rock Physics change – fluid substitution

- From the Rock Physical change tab first select the layer 03_1stResSand
- 2. Then select fluid substitution as the Rock Physics function
- Finally set the Monitor Gas and Oil Saturations to zero (100% Brine), to simulate a total water sweep.

At the bottom of the window greyed out you can see what the Rock Physics function has done to the elastic properties

Rock Physics change – fluid substitution

If we zoom in on the upper reservoir it is interesting to note that we get a very similar pattern of time lapse differences as we did for the full well synthetic

However, it is worth observing that there are now small amplitude changes below the reservoir. This is because unlike for full well synthetics these blocky models write their own time depth relationship, as discussed previously

SHARP REFLECTIONS

Rock Physics change – Try out some others

Now make additional copies of the base scenario and try to simulate a few different scenarios

Here are some suggestions

- High pressure Oil in upper res
- High pressure water sweep
- High pressure water in the lower reservoir
- Moving OWC

Creating Blocky scenarios

Additional exercise if time allows

Creating an initial blocky scenario

SHARP REFLECTIONS

Creating an initial blocky scenario

By default, if a log set is added to the blocking tool the AI and Vp/Vs ratio are used for defining block boundaries

The default values do quite a good job here for the overburden but the top reservoir and fluid contacts aren't well picked up

- Add the 3 tops 03_1stResSand, OWC and 05_IntraResShale as block tops by right clicking on their name and selecting add as boundary at
- 2. Try changing the objective function threshold and see what this does to the number of blocks?
- 3. It would also be useful to add a porosity, Water saturation and pore pressure

Creating an initial blocky scenario

- We can also add a manually placed boundary that represents the base of the inter reservoir shale. This is done by holding Ctrl and clicking in the log tracks. It might be useful to look at both the porosity density and water saturation tracks to place this correctly
- 2. Finally, we are going to set the tie point to Block 3 which will hopefully corresponds with the top of the BCU
- 3. We are then going to transfer this back to the Scenario modeler

Try a few different versions and see which you prefer

